2021年中国科学技术大学620数学分析考试大纲
作者:科大科院考研网 发表时间:2020-11-25 来源:中科大招生办
科目名称 数学分析
编号 620
一、考试范围及要点
1. 实数和数列极限
数列和收敛数列,收敛数列的性质,单调数列,基本列和 Cauchy 收敛原理,上下确界,上极限和下极限,Stolz 定理。
2. 单变量函数的微分学和积分学
函数的极限,无穷小与无穷大,连续函数,连续函数与极限计算,有限闭区间上连续函数的性质,函数的一致连续性,函数的上极限与下极限。导数的定义和计算,复合求导,高阶导数,Fermat 定理,Rolle 定理,Cauchy 定理,函数的极值,L’Hospital 法则,利用导数研究函数,凸函数。带 Lagrange 余项和 Cauchy 余项的 Taylor 定理。Riemann 积分的性质。
3. 多变量函数的微分学和积分学
多变量函数的极限,多变量连续函数,连续映射,方向导数和偏导数,多变量函数的微分,复合求导,高阶偏导数,Taylor 定理,极值和条件极值。矩形区域上的积分,矩形区域和有界区域上二重积分的计算,二重积分换元,三重积分。第一型和第二型曲线积分,Green 公式。曲面积分,第一和第二型曲面积分,Gauss 公式和 Stokes 公式。
4. 级数理论
无穷级数的基本性质,正项级数收敛判别法,一般项级的 Cauchy 收敛原理,Dirichlet和 Abel 判别法,绝对收敛和条件收敛,函数项级数,一致收敛,极限函数与和函数的性质,幂级数,函数的幂级数展开。
5. 反常积分及含参变量的积分
非负函数无穷积分的收敛判别法,第二积分中值定理,无穷积分的 Dirichlet 和 Abel 判别法,瑕积分的收敛判别法。含参变量的常义积分,含参变量反常积分的一致收敛,含参变量反常积分的性质,Gamma 函数和 Beta 函数。
6. Fourier 分析
周期函数的 Fourier 级数,Fourier 级数的收敛定理,平方平均逼近,Parseval 等式,Fourier积分和 Fourier 变换。
二、考试形式与试卷结构
考试形式::闭卷
试卷结构::满分 150 分,题目的形式为计算题和证明题。
参考书目名称
数学分析教程(上,下) 常庚哲,史济怀 中国科学技术大学出版社 3 2012