自从数学三和数学四合并之后,对考生来说可谓几家欢喜几家愁。合并后的新数学三的难度会比原数三有所降低,但比原数四的难度会有所增加。针对原数学四和新数学三的差异,给考生一些关于数理统计这部分的复习方法。
和原数四比起来,新数三增加了样本及抽样分布、参数估计这两章内容,对这两章内容很多同学感到学习起来非常吃力,做题目更是不知如何下手。其实这部分的知识没有大家想象的那么难,大家只要静下心来,专心学习,在考试的时候拿下这部分的分数是非常容易的。
参数估计占数理统计的一多半内容,所以参数估计是重点。统计里面第一章是关于样本、统计量的分布,这部分要求统计量的数字特征,要知道统计量是随机变量。统计量的分布及其分布参数是常考题型,常利用分布,分布及分布的典型模式及其性质以及正态总体样本均值与样本方差的分布进行。为此应记清上述三大分布的典型模式。关于三大分布,有一个口诀,有方便大家记忆:
正态方和卡方()出,卡方相除变;
若想得到分布, 一正卡再相除。
第一个口诀的意思是标准正态分布的平方和可以生成卡方分布,而两卡方分布除以其维数之后相除可以生成分步,第二个口诀的意思是标准正态分布和卡方分布相除可以得到分布。
参数的矩估计量(值)、最大似然估计量(值)也是经常考的。很多同学遇到这样的题目,总是感觉到束手无策。题目中给出的样本值完全用不上。其实这样的题目非常简单。只要你掌握了矩估计法和最大似然估计法的原理,按照固定的程序去做就可以了。矩法的基本思想就是用样本的阶原点矩作为总体的阶原点矩。估计矩估计法的解题思路是:
1)当只有一个未知参数时,我们就用样本的一阶原点矩即样本均值来估计总体的一阶原点矩即期望,解出未知参数,就是其矩估计量。
2)如果有两个未知参数,那么除了要用一阶矩来估计外,还要用二阶矩来估计。因为两个未知数,需要两个方程才能解出。解出未知参数,就是矩估计量。考研大纲上只要求掌握一阶、二阶矩。
最大似然估计法的最大困难在于正确写出似然函数,它是根据总体的分布律或密度函数写出的,我们给大家一个口诀,方便大家记忆。
样本总体相互换,矩法估计很方便;
似然函数分开算,对数求导得零蛋。
第一条口诀的意思是用样本的矩来替换总体的矩,就可以算出参数的矩估计;第二个口诀的意思是把似然函数中的未知参数当成变量,求出其驻点,在具体计算的时候就是在似然函数两边求对数,然后求参数的驻点,即为参数的最大似然估计。
如果大家记住了上面的口诀,那么统计部分的知识点就很容易掌握了。
(责任编辑:科大科院考研网)