加入25年中科院考研群 加入25年中科大考研群
中国科学院数学与系统科学研究院洪佳林 男 博导
 

科院考研推荐链接:

考研资料:中科院考研真题  

考研信息:找个直系学长,咨询考研问题   

考研一对一:学长带队,复习不累

研究领域

   

招生信息

   
招生专业
070102-计算数学
070104-应用数学
招生方向
动力系统保结构算法理论与应用
随机微分方程数值方法

教育背景

1992-08--1994-12   吉林大学   研究生/博士学位
学历
   
学位
   

工作经历

   
工作简历
2003-04~现在, 中科院数学与系统科学研究院, 研究员
1999-01~2003-04,中科院数学与系统科学研究院, 副研究员
1997-03~1999-03,西班牙VALLADOLID大学, 访问学者
1996-11~1998-12,中科院计算数学与科学工程计算研究所, 副研究员
1995-01~1996-11,中科院应用数学研究所, 博士后
1992-08~1994-12,吉林大学, 研究生/博士学位
社会兼职
2011-12-15-今,中国数学会常务理事, 
2008-03-03-今,全国政协委员, 
2007-12-03-今,民革中央委员, 
2007-12-03-今,中科院工会副主席, 

教授课程

随机微分方程数值解
数值分析
哈密尔顿系统的辛几何算法和多辛几何算法

专利与奖励

   
奖励信息
   
专利成果
   

出版信息

   
发表论文
(1) Parareal Exponential θ -Scheme for Longtime Simulation of Stochastic Schrödinger Equations with Weak Damping., SIAM J. Sci. Comput., 2019-11, 第 1 作者
(2) Dynamic Evaluation of Exponential Polynomial Curves and Surfaces via Basis Transformation., SIAM J. Sci. Comput, 2019-11, 第 2 作者
(3) A Review on Stochastic Multi-symplectic Methods for Stochastic Maxwell Equations., Commun. Appl. Math. Comput., 2019-10, 第 3 作者
(4) Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen-Cahn equation., IMA J. Numer. Anal., 2019-09, 第 3 作者
(5) Convergence analysis of a symplectic semi-discretization for stochastic NLS equation with quadratic potential., Discrete Contin. Dyn. Syst. Ser. B, 2019-08, 第 1 作者
(6) Strong and weak convergence rates of a spatial approximation for stochastic partial differential equation with one-sided Lipschitz coefficient., SIAM J. Numer. Anal., 2019-08, 第 2 作者
(7) Optimal regularity of stochastic evolution equations in M-type 2 Banach spaces., J. Differential Equations, 2019-07, 第 1 作者
(8) Mean-square convergence of a semidiscrete scheme for stochastic Maxwell equations., SIAM J. Numer. Anal., 2019-07, 第 2 作者
(9) Runge-Kutta semidiscretizations for stochastic Maxwell equations with additive noise., SIAM J. Numer. Anal, 2019-07, 第 2 作者
(10) Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations., J. Differential Equations, 2019-05, 第 2 作者
(11) Well-posedness and optimal regularity of stochastic evolution equations with multiplicative noises., J. Differential Equations, 2019-05, 第 1 作者
(12) Analysis of a splitting scheme for damped stochastic nonlinear Schrödinger equation with multiplicative noise, SIAM J. Numer. Anal, 2018, 第 2 作者
(13) Finite element approximations for second-order stochastic differential equation driven by fractional Brownian motion, IMA J. Numer. Anal., 2018, 第 2 作者
(14) Symplectic Runge-Kutta methods for Hamiltonian systems driven by Gaussian rough paths, Appl. Numer. Math, 2018, 第 1 作者
(15) Preface [Numerical methods for stochastic partial differential equations (SPDEs), J. Comput. Math, 2018, 第 1 作者
(16) Explicit pseudo-symplectic methods for stochastic Hamiltonian systems, BIT, 2018, 第 3 作者
(17) Optimal error estimate of conservative local discontinuous Galerkin method for nonlinear Schrödinger equation, Appl. Numer. Math, 2018, 第 1 作者
(18) A compact scheme for coupled stochastic nonlinear Schrödinger equations, Commun. Comput. Phys., 2017, 第 2 作者
(19) Construction of symplectic Runge-Kutta methods for stochastic Hamiltonian systems, Commun. Comput. Phys., 2017, 第 2 作者
(20) Approximation of invariant measure for damped stochastic nonlinear Schrödinger equation via an ergodic numerical scheme, Potential Anal., 2017, 第 2 作者
(21) Numerical analysis on ergodic limit of approximations for stochastic NLS equation via multi-symplectic scheme, SIAM J. Numer. Anal., 2017, 第 1 作者
(22) Dynamic evaluation of free-form curves and surfaces, SIAM J. Sci. Comput., 2017, 第 2 作者
(23) Stochastic symplectic and multi-symplectic methods for nonlinear Schrödinger equation with white noise dispersion, J. Comput. Phys., 2017, 第 2 作者
(24) Mean-square convergence of a symplectic local discontinuous Galerkin method applied to stochastic linear Schrödinger equation, IMA J. Numer. Anal., 2017, 第 2 作者
(25) Local energy- and momentum-preserving schemes for Klein-Gordon-Schrödinger equations and convergence analysis, Numer. Methods Partial Differential Equations, 2017, 第 2 作者
(26) Stochastic symplectic Runge-Kutta methods for the strong approximation of Hamiltonian systems with additive noise, J. Comput. Appl. Math., 2017, 第 3 作者
(27) Optimal error estimate of a compact scheme for nonlinear Schrödinger equation, Appl. Numer. Math., 2017, 第 1 作者
(28) Strong convergence rate of finite difference approximations for stochastic cubic Schrödinger equations, J. Differential Equations, 2017, 第 2 作者
(29) Approximating stochastic evolution equations with additive white and rough noises, SIAM J. Numer. Anal., 2017, 第 2 作者
(30) An energy-conserving method for stochastic Maxwell equations with multiplicative noise, J. Comput. Phys., 2017, 第 1 作者
(31) High order conformal symplectic and ergodic schemes for the stochastic Langevin equation via generating functions, SIAM J. Numer. Anal., 2017, 第 1 作者
(32) Convergence of a θ -scheme to solve the stochastic nonlinear Schrödinger equation with Stratonovich noise, Stoch. Partial Differ. Equ. Anal. Comput., 2016, 第 2 作者
(33) Energy evolution of multi-symplectic methods for Maxwell equations with perfectly matched layer boundary, J. Math. Anal. Appl., 2016, 第 1 作者
(34) Preservation of physical properties of stochastic Maxwell equations with additive noise via stochastic multi-symplectic methods, J. Comput. Phys., 2016, 第 2 作者
(35) Quasi-effective stability for nearly integrable Hamiltonian systems, Discrete Contin. Dyn. Syst. Ser. B, 2016, 第 2 作者
(36) Stochastic Runge-Kutta Semidiscretization for Stochastic Schroedinger Equation, SIAM J.. Numer. Anal., 2016, 第 2 作者
(37) Conservative methods for stochastic differential equations with a conserved quantity, Inter. J. Numer. Anal. & Model., 2016, 第 3 作者
(38) Projection methods for stochastic differential equations with conserved quantities, BIT Numer. Math., 2016, 第 3 作者
(39) Modified equations for weakly convergent stochastic symplectic scheme via their generating functions, BIT Numer. Math., 2016, 第 2 作者
(40) Compact and efficient conservative schemes for coupled nonlinear Schrödinger equations, Numer. Methods Partial Differential Equations, 2015, 第 2 作者

 

 


 

 

 

 
 
上一篇:中国科学院工程热物理研究所洪慧 女 硕导 下一篇:中国科学院上海天文台洪晓瑜 男 博

在线咨询

进入QQ咨询

王老师

微信咨询

杨老师

进入20中科院QQ群

709867297

进入20中科大QQ群

680149146

友情链接

科大科院考研网版权所有 © 2020-2022 皖ICP备2021018242号