C_m 随温度的变化

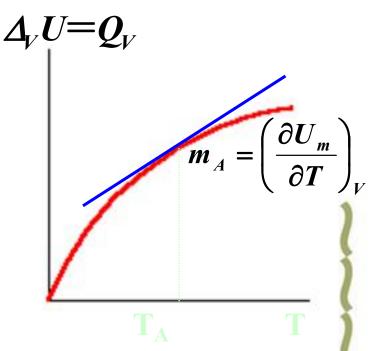
$$C_{p,m} = a + bT + cT^{2} + dT^{3}$$
 $C_{p,m} = a' + b'T + c'T^{-2}$

平均摩尔定压热容

$$\overline{C}_{p,m} = \frac{Q_{p,m}}{T_2 - T_1} = \frac{\int_{T_1}^{T_2} C_{p,m} dT}{T_2 - T_1}$$

$$\overline{C}_{p,m} = \frac{1}{2} \left[C_{p,m} (T_1) + C_{p,m} (T_2) \right]$$

$$\overline{C}_{p,m} = C_{p,m} \left(\overline{T} \right) \qquad \overline{T} = \frac{1}{2} \left(T_1 + T_2 \right)$$



$C_{V,m}$ 和 $C_{p,m}$ 的关系

$$C_{p,m} - C_{V,m} = \left(\frac{\partial H_{m}}{\partial T}\right)_{p} - \left(\frac{\partial U_{m}}{\partial T}\right)_{V} = \left\{\frac{\partial (U_{m} + pV_{m})}{\partial T}\right\}_{p} - \left(\frac{\partial U_{m}}{\partial T}\right)_{V}$$
$$= \left(\frac{\partial U_{m}}{\partial T}\right)_{p} + p\left(\frac{\partial V_{m}}{\partial T}\right)_{p} - \left(\frac{\partial U_{m}}{\partial T}\right)_{V}$$

由 $U_m = f(T, V)$ 得:

$$dU_{m} = \left(\frac{\partial U_{m}}{\partial T}\right)_{V} dT + \left(\frac{\partial U_{m}}{\partial V_{m}}\right)_{T} dV_{m}$$

恒压下,可得:

$$\left(\frac{\partial U_{m}}{\partial T}\right)_{p} = \left(\frac{\partial U_{m}}{\partial T}\right)_{V} + \left(\frac{\partial U_{m}}{\partial V_{m}}\right)_{T} \left(\frac{\partial V_{m}}{\partial T}\right)_{p} \qquad 102$$

将上式代入($C_{p,m}$ - $C_{V,m}$)的式子中:

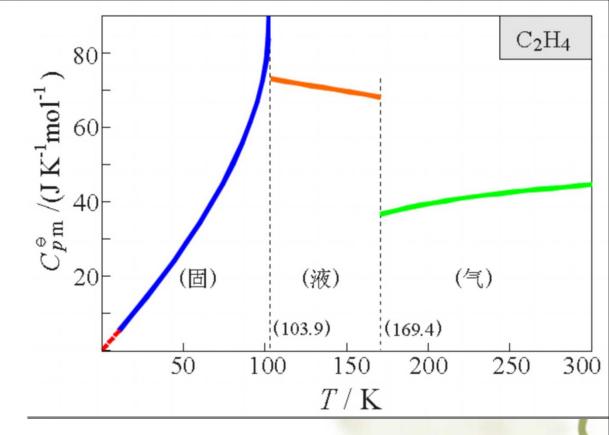
$$C_{p,m} - C_{V,m} = \left[\left(\frac{\partial U_{m}}{\partial V_{m}} \right)_{T} + p \right] \left(\frac{\partial V_{m}}{\partial T} \right)_{p}$$

恒压过程,温度升高体积膨胀,导致:

- 1.系统内部分子势能升高,热力学能增加;
- 2. 对环境做功。

因此
$$C_{p,m}$$
总是大于 $C_{V,m}$
对理想气体 $p\left(\frac{\partial V_m}{\partial T}\right)_p = p\left(\frac{\partial \left(\frac{RT}{p}\right)}{\partial T}\right)_p = p\frac{R}{p} = R$
 $C_{p,m} - C_{V,m} = R$
对液体与固体
 $C_{p,m} - C_{V,m} \approx 0$
 $\left(\frac{\partial V_m}{\partial T}\right)_p \approx 0$

- ◆热容是物质的特性
- ◆同一物质,聚集状
- 态不同, 热容不同
- ◆热容是温度的函数



◆理想气体的摩尔热容

单原子气体
$$C_{V,m} = 3R/2$$
 $C_{p,m} = 5R/2$

双原子气体
$$C_{V,m} = 5R/2$$
 $C_{p,m} = 7R/2$

2. 恒容变温及恒压变温过程热的计算

对于n一定的某系统进行单纯pVT变化

$$C_{V,m} \stackrel{\text{def}}{=} \frac{\delta Q_{V}}{dT} = \left(\frac{\partial U_{m}}{\partial T}\right)_{V} \longrightarrow Q_{V} = \Delta U_{V} = n \int_{T_{1}}^{T_{2}} C_{V,m} dT$$

$$C_{p,m} \stackrel{\text{def}}{=} \frac{\delta Q_p}{dT} = \left(\frac{\partial H_m}{\partial T}\right)_p$$

$$Q_p = \Delta H_p = n \int_{T_1}^{T_2} C_{p,m} dT$$

若
$$C_{V,m}$$
为常数,则 $Q_V = \Delta U_V = nC_{V,m}\Delta T$

若
$$C_{p,m}$$
为常数,则 $Q_p = \Delta H_p = nC_{p,m}\Delta T$

3. 凝聚系统变温过程

$$Q_V = Q_p = \Delta H_p = n \int_{T_1}^{T_2} C_{p,m} dT$$

§ 2.5 焦耳实验、理想气体的U与H

1. 焦耳实验

2. 理想气体的热力学能与焓

$$W = 0$$
 $Q = 0$

$$\Delta U = 0$$

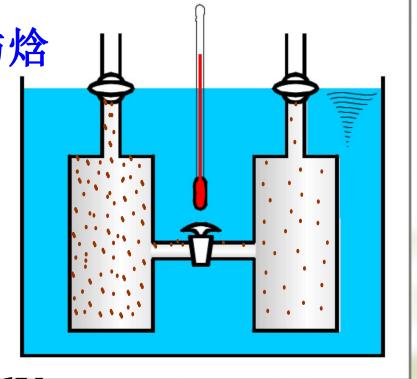
$$dT = 0$$

$$dV > 0$$

$$dp < 0$$

$$dU = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV$$

$$\left(\frac{\partial U}{\partial V}\right)_T = 0 \quad \boxed{\Box} \boxed{\Xi} \left(\frac{\partial U}{\partial p}\right)_T = 0$$



理想气体U=f(T)

对于无相变及化学变化的 理想气体等温过程: $\Delta U = 0$

$$H=U+pV$$

$$\left(\frac{\partial H}{\partial p}\right)_T = \left(\frac{\partial U}{\partial p}\right)_T + \left(\frac{\partial (pV)}{\partial p}\right)_T = 0 + \left(\frac{\partial (nRT)}{\partial p}\right)_T = 0$$

同理
$$\left(\frac{\partial H}{\partial V}\right)_T = 0$$

对于无相变及化学变化的理想气体等温过程:

$$\Delta H = 0$$

对于理想气体U=f(T,V), H=f(T,P)

$$dU = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV = \left(\frac{\partial U}{\partial T}\right)_{V} dT + 0$$

$$= n \left(\frac{\partial U_{m}}{\partial T}\right)_{V} dT = nC_{V,m} dT \qquad \Delta U = n \int_{T_{1}}^{T_{2}} C_{V,m} dT$$

$$dH = \left(\frac{\partial H}{\partial T}\right)_p dT + \left(\frac{\partial H}{\partial p}\right)_T dp = \left(\frac{\partial H}{\partial T}\right)_p dT + 0$$

$$= n \left(\frac{\partial H_m}{\partial T} \right)_p dT = n C_{p,m} dT \qquad \Delta H = n \int_{T_1}^{T_2} C_{p,m} dT$$

说明对于理想气体,△U与△H的计算不再受过程 恒容与恒压条件的限制。

* 例:将10.0g 523K、2.00×10⁵Pa的CO(g)等压降温到273K,计算此过程的Q、 Δ U、 Δ H。已知在此温度区间 $\overline{C}_{p,m}(CO,g) = 29.50J \cdot K^{-1} \cdot mol^{-1}$ 。

解:
$$n = \frac{m}{M} = \frac{10.0}{28.01} mol = 0.375 mol$$

$$Q_p = \Delta H = n\overline{C}_{p,m} (T_2 - T_1) = -2.63 kJ$$

$$(1)\Delta U = \Delta H - \Delta (pV) = \Delta H - \Delta (nRT)$$

$$= \Delta H - nR\Delta T = -1.89 kJ$$

$$(2)\overline{C}_{V,m} = \overline{C}_{p,m} - R = 21.19 kJ \cdot K^{-1} \cdot mol^{-1}$$

$$\Delta U = n\overline{C}_{V,m} (T_2 - T_1) = -1.89 kJ$$

等压过程

$$\Delta U_p = U_2 - U_1$$

初态

$$T_1 = 523K$$

$$P_1 = 2.00 \times 10^5 Pa$$

$$V_1 = 7.76 \times 10^{-3} \text{m}^3$$

 U_1 , H_1

等容过程

$$\Delta U_{V} = U_{2}' - U_{1}$$

$$\Delta U_p = \Delta U_V = n\overline{C}_{V,m}(T_2 - T_1)$$

末态(1)

$$T_2 = 273K$$

$$P_1 = 2.00 \times 10^5 Pa$$

$$V_2 = 4.05 \times 10^{-3} \text{m}^3$$

$$U_2$$
, H_2

$$\Delta U_{\mathrm{T}} = 0$$

末态(2)

$$T_2 = 273K$$

$$P_2 = 1.04 \times 10^5 Pa$$

$$V_1 = 7.76 \times 10^{-3} \text{m}^3$$

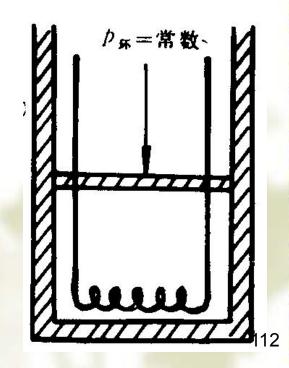
例1: 将一电炉丝浸入刚性绝热容器的水中,接上电源通电一段时间,试判断此过程中(a)水的热力学能,(b)水和电炉丝总的热力学能是增加、减少还是不变?

解: $(a)Q>0,W=0, \Delta U=Q+W>0$

(b) $Q=0,W>0, \Delta U=Q+W>0$

例 2: 在一个带有无摩擦、无重量的绝热活塞的绝热气缸内充入一定量的气体。气缸内壁绕有电阻丝,活塞上方施以一恒定压力,并与缸内气体成平衡状态,如右图所示。现通入一微小电流,使气体缓慢膨胀。此过程为一等压过程,故 $Q_p = \Delta H$,而该系统为一绝热系统,则 $Q_p = 0$,所以此过程的 $\Delta H = 0$ 。此结论

- (1)以气体为系统:
 - "." W'=0,Q>0, .". $Q_p = \Delta H > 0$
- (2) 以气体+电阻丝为系统:
 - $..W'>0,Q=0,..Qp\neq\Delta H$



例3: 在炎热的夏天,有人提议打开室内正在运行的冰箱的门,以降低室温,你认为此建议可行吗?

$$Q = 0, W > 0 \Rightarrow \Delta U = Q + W > 0$$

$$\Delta U = C_{V,m}(T_2 - T_1) > 0 \Rightarrow T_2 > T_1$$

上次课主要内容

1. 恒容热、恒压热、焓

$$H=U+pV$$
 $Q_V=\Delta U$ $Q_p=\Delta H$

2. 恒容变温及恒压变温过程热的计算

$$C_{V,m} \stackrel{\text{def}}{=} \frac{\delta Q_{V}}{dT} = \left(\frac{\partial U_{m}}{\partial T}\right)_{V} \longrightarrow Q_{V} = \Delta U_{V} = n \int_{T_{1}}^{T_{2}} C_{V,m} dT$$

$$C_{p,m} \stackrel{\text{def}}{=} \frac{\delta Q_p}{dT} = \left(\frac{\partial H_m}{\partial T}\right)_p \longrightarrow Q_p = \Delta H_p = n \int_{T_1}^{T_2} C_{p,m} dT$$

对理想气体 $C_{p,m}-C_{V,m}=R$ 对液体与固体 $C_{p,m}-C_{V,m}\approx 0$

3. 理想气体的热力学能与焓

$$\left(\frac{\partial U}{\partial V}\right)_T = 0 \qquad \left(\frac{\partial U}{\partial p}\right)_T = 0$$

$$\left(\frac{\partial H}{\partial V}\right)_T = 0 \qquad \left(\frac{\partial H}{\partial p}\right)_T = 0$$

$$\Delta U = n \int_{T_1}^{T_2} C_{V,m} dT \qquad \Delta H = n \int_{T_1}^{T_2} C_{p,m} dT$$

$$\Delta H = n \int_{T_1}^{T_2} C_{p,m} dT$$

§ 2·6 可逆过程与绝热过程

1. 可逆体积功

$$W_a = -p_{\text{FA}}\Delta V = -18.0kJ$$

$$W_b = -\Sigma p_{\text{FF}} \Delta V = [-2 \times (12 - 6)]$$

$$-1 \times (24-12)]kJ = -24.0kJ$$

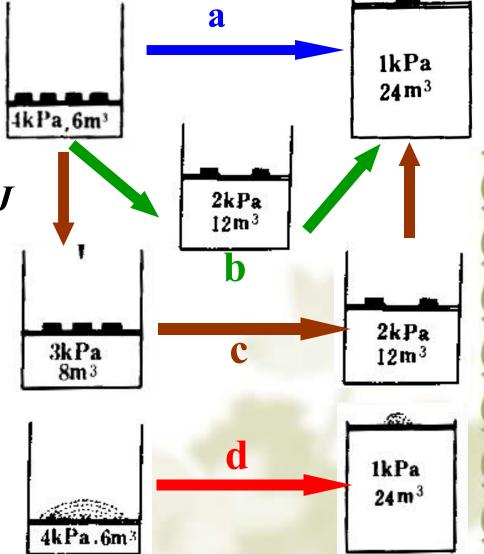
$$W_c = -26.0kJ$$

$$W_d = -\int_{V_1}^{V_2} p_{\text{FF}} dV$$

$$=-\int_{V_{\cdot}}^{V_{2}}(p-dp)dV$$

$$= -\int_{V_1}^{V_2} p dV = \int_{V_1}^{V_2} \frac{nRT}{V} dV$$

$$= nRT \ln \frac{V_1}{V_2} = nRT \ln \frac{p_2}{p_1}$$



 $W_d = p_1 V_1 \ln \frac{p_2}{1} = -33.3 kJ$

将以上过程逆向进行

$$W_{a'}=72.0kJ$$

$$W_{b'} = 48.0 kJ$$

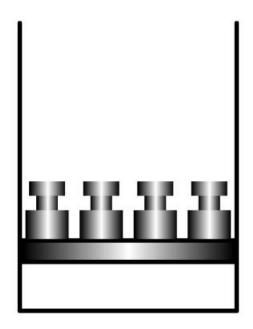
$$W_{c'} = 44.0kJ$$

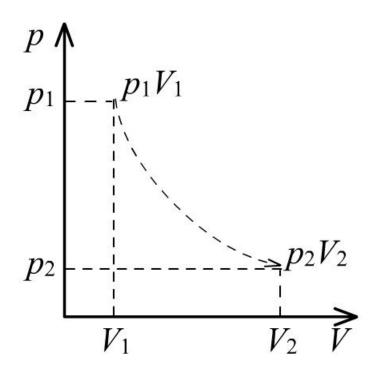
$$W_{d'} = 33.3kJ$$

膨胀(压缩)	一次	二次	三次	多次
方式				
W(膨胀)/kJ	-18	-24	-26	-33.3
W(压缩)/kJ	72	48	44	33.3
∑W/kJ	54	24	18	0
∑Q/kJ	-54	-24	-18	0

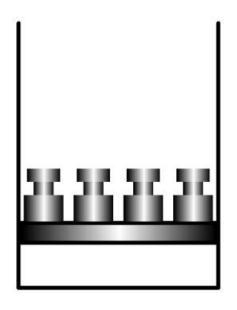
在同样的初末态之间进行的等温过程中,可逆膨胀时,系统对环境作最大功;可逆压缩时,环境对系统作最小功。

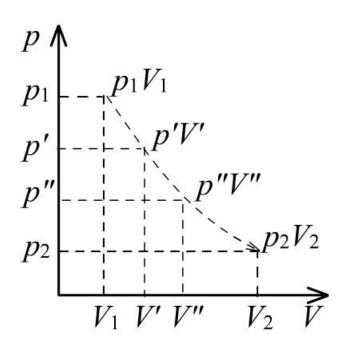
一次等外压膨胀





多次等外压膨胀





可逆膨胀

